SOUND INSULATION BY A FINITE CYLINDER

by
J.H.G. Verhagen*

Introduction.

This paper presents an analysis of the sound field generated by a simple
source which is surrounded by a flexible cylindrical tube of finite length.
The acoustic properties of the material of the tube wall differ only slightly
from those of the surrounding medium. Assuming the thickness of the tube
wall small compared to the wave length of sound a perturbation method,
often referred to as the '"Born approximation', can be used. In this ap-
proximation the whole scattering field is considered as a perturbation
modlfylmg ’Ehewg)rlmary wave motion of the simple source at the origin
o, = - i(kr-

The flrst Born approx1mat10n involves substituting the unperturbed wave
function under the integral sign in the integral equation for scattering. The
second approximation is obtained by substituting the first approximation
for the unknown function and so on. An asymptotic solution is obtained for
the sound pressure at large distances from the scattering region,

Statement of the problem.

A zero order spherical sound source supplying a constant volume velocity
is located at the origin of a rectangular coordinate system x-y-z.

A circular cylindrical tube of length 21, whose axis coincides with the
x-axis, encloses the sound source at its center, The wall thickness of the
tube is h, and the mean radius between outer- and inner cylinder surface
is denoted by R. See figure below, AY
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The source radiates a monochromatic wave of frequency w/2r. The
following assumptions about the properties of the tube are made:
The flexibility of the tube wall is such, that Young's modulus of elasticity
can be neglected.
The wall thickness h is small compared to the cylinder radius h/R « 1,
The wall thickness is small compared to the wave-length of the sound
within the wall h/A; « 1.
The acoustic properties of the tube material differ only slightly from those
of the surrounding medium

p/pe = 0(1) X/Aq = 0(1)
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With these assumptions the pressure- and velocity differences between
inner and outer boundary of the tube-wall can be expressed in terms of
the primary wave motion of the source at the origin. The boundary con-
ditions on the inner and outer boundary, can be applied on the mean cylinder
surface with radius R, after carrying out an analytical continuation of the
velocity potential,

The remaining solution of the Helmholtz equation, satisfying given con-
ditions at a surface of discontinuity is straightforward and well-known, An
asymptotic expansion of this solution at large distances from the origin
can be made,.

The motion of the cylinder wall.

The problem is rotatory symmetric around the x-axis, Polar coordinates
X, r, 8 are introduced. Due to the assumption, the thickness of the cylinder
wall is small compared to the wave length of sound within the wall (h k. « 1),
the pressure within the wall will be equal to the mean pressure at the
boundaries.

So,

Py + P,
p =5 ‘ (1)

where subscript i indicates the inner region and o the outer region of the

cylinder surface,
Linearizing for small values of h/R, the equation of continuity becomes:

ou 0
pchR5_£+a—t(pchR)=0 (2)

the equation of motion in x direction:

ap ou _
ax t P 5t 0 (3)

the equation of motion in radial direction:

°R )

Py =P = P h =5

1

The sound velocity within the wall of the tube is

\ , 0 W
c. = ._E = — (5)
c 8pc k.
Eliminating u from (2) and (3) and substituting (5) results into
2R k2 8%p

+ (6)
at?  p w? at?

Expressing the equations (4) and (6) in terms of the velocity potential
(Re)! OP(x,y,2z,t) = ¢(x,y, z)e" ! using the conditions

a @o+®i
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we get the dimensionless equations:

Pe h 3
$o-¥i~ 5 3R 35 Wo *wi) =0 (8)
and
) h h ( & 2p2 -
= ﬁ gﬁao it 3R (¢o+§0i)i + R {8_5_5‘- (‘Po+‘pi)+ch (‘po.Hpi)E =0 (9)
where £ = z and
R
n = .YR_ are dimensionless polar coordinates
h
¥o = Po(E, 1 +3 ) and
¢ = pi(E, 1 -% %) is the velovity potential

on the outer- respectively inner cylinder surface,
By an analytical continuation of ¢, and y; on the mean cylinder surface

n=1 E €%, we can write

h2

Po(8s 1+ 3 R) =0 (B 1)+ 3 & %wo(s,1)+0<§> (10)
h?2

pi(8 1 -3 ) e 1) -4 5 %wi(€,1)+0<§> (11)

The discontinuous boundary conditions on the cylinder with radius R
transform into

h2
h Pey 8y -
Po =¥t R(l-3 )552(¢o+¢1)+0<?>-0 (12)
2 2
Pe 3 h P 97 Ootey 2.2 2.2 P Pot¥i h
;’a—ﬁ(lpo-qﬂl)'i‘ﬁ{(l-p—)a—g—z ) +(ch -k"R ‘5‘) ) + 0 'EE =0
(13)

where use has been made of the fact that ¢ satisfies

o2 a2
[—+— +%§ﬁ+k2R2]go=O

Relation (12) is Newton's second law for the motion of the cylinder wall
in radial direction, while (13) represents the equation of wave motion in
axial direction within the wall.
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The approximate solution.

If the acoustic properties of the cylinderwall deviate only slightly from
those of the surrounding medium, we can apply Born's approximation for
inhomogeneous media,

As a zero order approximation the primary wave motion of the source
at the origin is taken as

eikR\/§2+-p)2
p=p, = \/—E"_'_z"—ﬁ—'z— (14)

The first order approximation of the boundary conditions on the cylinder
surface results into

o, 1 )eikR\/Ez+1
Vez+ 1 E2+1

0o - 0; = -ER(l -5 ) (ikR - (15)

and
eikR\/E_,2+1

5 olkR £241
hj) p © 2p2 0 252 .
-2 -1 ———— +(k’R* £ -k?R%) —— (16)

57 (Po-Pi) Y c
o R o Veer A

i

The solution of the wave motion in first order approximation becomes

IR 2K gikh 4 ikh
p(E,Nn) = g + f f {U(Eo) — + U(E,) (dn e—-—) %de dg, (17)
*I/R %o h/R o h/R ‘qo=1
where
B = V-5, + 2 + 0% - 2nm, cos (6-) (18)

is the distance between the point P(§, n cos v, n sin y¥) and the point
Q(E,, M, cOs 8, N, sin 8) on the cylinder surface (n,= 1).

The problem is axisymmetric, hence the solution is independent of 7.
Take v= 0.

The first part of the integral in (17) is the potential due to a source
distribution on the cylinder surface with strength o(g,)

92 o kR 241
{(&_1) i
Pe 082 VEZ+ 1
ikR\/Egﬂ}

VEZ + 1

o]

+

s/ iy

10 1
0(80) = = Tx oy (Po=¥1) = I3

+ ®2R* 2 -x?RY

5 (19)

The second part of the integral in (17) can be considered as the potential
due to a dipole distribution on the cylinder surface with strength u(g )
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; 2
ikR +1
e fo

u(E) = - 35 (Vo) = 7 R (1 ‘%)(ikR ‘\/g21+ 1) 21 0

We are especially interested in the radiation of sound at large distances
from the origin,

It is easy to derive the asymptotic behaviour of the velocity potential
expressed in equation (17) for large values of VEZ + 52, Introduce

n
£=VE2+1n? cosa
N =V52 +n2 sin o

- E
The asymptotic expansion for % reads
_ ) 271
E cosa + n_sina cos 8 EZ"‘TI
%:\/52+n2 1-9 0 02 . + ;’ 02
_ VE? +1 2 +n

5 = E,cosa + n, sina cos 8 3 5.1
=VE® +n° |1 - = = + O(E® +n°%)
- VE® +1

and
o ki eikR\/E2+n2
h/R \/EZ + 772

The potential at the point P(§,7) becomes

=1 3 L
o ikR(E, cos & + 1y sin o cos 8) [1 + 0(E2 +T)2) z] (21)

e(E,n) =

: \/ 2 2
g IR §%+m R -ikR E, cos o .
1+ 27 e {O'(EO)JO (kR sin &) +
1

VEZ 1+ 12

-1/R

+ W(E,)kR sina Jy(kR sina)] dgo] (22)

Substituting the expressions (19) and (20) for o{(E,) and (5 ,) and evaluating
the integral gives the final result

p(E,n)* VEZ +n? h P ?
=1+= i = - k .
IRVEE 1 2 R Jo (KR sina) [( ) 1) cos(kl cos a) g

i 2,52 AT P
.(ik'l —-——l—> elk PrRE (% -1) sin(kl cos @)kR cosa B eHRVIZ+RT,
[

VI2+R2 VIZ+ R
I/R e ikR(VEOE+ 1 - E,coso)
dg, | +

+3 {(kng-szz cos?a)f —k'2R2sin2a'E j >
pc i/R \/Eo +1

b R sina I (kR s " Py IR JIR( E2+1 - g cosa) . ) N
+ == sina sina -— ikR-
R p YR 5(2) + 1 ,/52_{_1

° (23)
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Some particular solutions of the problem.

The general solution as expressed by equation 23 reduces to a more
simple result for the following particular cases.

Case 1,
The frequency of the sound emitted by the point source tends to zero,
Expanding equation 23 in power series of the constant kR results into,

R%1
- (F2 1 2yt ikREZ+1)2{ Ll_( p) ‘ h 222
n) = + e 1+ 1-2%) —me—— + =5 0(k
e(g,n) = (7 + 1% 75w TROERY
So the amplitude _of the perturbed wave motion is inversely proportional
to the distance VEZ +n?, and to the square of the wave-length X.

Case 2,

The frequency of the sound wave tends to infinity.
Still satisfying the conditions, hk. « 1 and k/k. is order unity, involves
that

h/R « (kR)! approaches zero.

For large values of the constant kR an asymptotic approximation of the
integrals in expression 23 can be obtained by the application of the method
of stationary phase,

The mean contribution to the integral

/R
I]_ = ( (EZ+1)-i elkR( E +1 -ECOS&) dE
*1(R)

arises from the neighbourhood of that point £, of the integration interval
at which the phase of the oscillatory part of the integrand is stationary.
The value of g, is determined by the relation

%(V52+1 - Ecosa) =0

SO E, = cotg a.
The integral I; is of order (kR)'% when the stationary point g, lies in
the interior of the interval -1/R < £ < 1/R and of order (kR) when &,
lies outside the interval.
The approximate solution is

. . m
I, =\ [ 2T iRsina+3) 0(kR)™®/? if cotg a g %
kR sin @
= O(kR)™ if cotg @> &

Likewise the second integral in equation 23 becomes

IR o
Ig= j {(52 +1) kR - (g2 + 1) /2 | MRVE + 1 -Feosa) g o
-1/R
i T
- iVITER sin @ 1) 4 okR)F if cotg @ < &
1
R

= 0(1) if cotg a >
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Using the asymptotic expressions of the besselfunctions J,(kR sin @) and
J, (kR sin @) for large values of kR the final result becomes

le(,n)] = (&2 + n?)H [1 +% l:% kR sin e cos(2 kR sin ).

k2-x?
c” Il 0 i . 1
K.T___z_>__+ LA O(kR)‘fz]] if cotge <3
k" sin” a pc P, o

= (g2 + n?)t [1 + % O(kR)**] if cotg @ > lR

From the above it can be concluded that the perturbation of the Primary
wave motion at large distances from the source is greater in the "shadow
region' cotg ag %{ than it is in the region cotg >l. Whether the intensity
of the radiated sound in the shadow region is increasedor decreased depends

: ke-k® p o [
on the sign of the term 5 — t— - .
k“ sin“a P, 0 ")
Case 3.

When the length of the cylindrical tube tends to infinity the integrals in
equation 23 can be written as:

: 1/R
lim
1/R = IR

‘ . 5
‘ (52 +1)-§ e 1KR( E +1-scosm¢)dE -

1/R . 2
= lim 2] 52+ 1)t eMVET o5k kR cosa)dE = ir HIKR sina)

and © ’
IR e .
lim J' MEVET L Eeos ) fikr@® + 1) - (62 + 1) ag =

-1/R 1
= ~irkR sin e H(1 )(kR sin a)

The velocity potential at large distances from the origin for an infinite
long cylinder becomes:

e(5,mVE? + 1’ . h 2.2 2.9 2. P . .25,2, . 2
eikR\/Ez+n2 _1+17r.2—ﬁ [{(ch'kRCOS a)b:-kR51n a}.

. . . A
J, (kR sin a)H(ol) (kR sin @) - k*R%sin%a (1 - E‘i) J, (kR sin a)H(ll)(kR sin a):[

The same result has been obtained by P.le Grand [1], who used a
Fourier transform technique.

Numerical results,
Equation 23 is numerically evaluated for the special case h/R = 0.1
kR = 1.5 @=7/2 1/R =1 plo, =1.2 k/k. = 0.8,
Each one of these quantities is varied, leaving the other quantities fixed.
The reduction of sound intensity far away from the source is expressed
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Figure 3,

e =1

kR =15
a .“/2
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Figure 4,
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Figure 6.
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in decibels according to the definition equation
D = -20 10g |so(6.n)vf-;2+ n? |

Fig.1 till 6 show the sound reduction due to the effect of the cylindrical
screen as a function of the various parameters,
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